Abstract
BackgroundAlthough Anopheles funestus is difficult to rear, it is crucial to analyse field populations of this malaria vector in order to successfully characterise mechanisms of insecticide resistance observed in this species in Africa. In this study we carried out a large-scale field collection and rearing of An. funestus from Mozambique in order to analyse its susceptibility status to insecticides and to broadly characterise the main resistance mechanisms involved in natural populations.Methodology/Principal Findings3,000 F1 adults were obtained through larval rearing. WHO susceptibility assays indicated a very high resistance to pyrethroids with no mortality recorded after 1h30min exposure and less than 50% mortality at 3h30min. Resistance to the carbamate, bendiocarb was also noted, with 70% mortality after 1h exposure. In contrast, no DDT resistance was observed, indicating that no kdr-type resistance was involved. The sequencing of the acetylcholinesterase gene indicated the absence of the G119S and F455W mutations associated with carbamate and organophosphate resistance. This could explain the absence of malathion resistance in this population. Both biochemical assays and quantitative PCR implicated up-regulated P450 genes in pyrethroid resistance, with GSTs playing a secondary role. The carbamate resistance observed in this population is probably conferred by the observed altered AChE with esterases also involved.Conclusion/SignificanceThe high level of pyrethroid resistance in this population despite the cessation of pyrethroid use for IRS in 1999 is a serious concern for resistance management strategies such as rotational use of insecticides. As DDT has now been re-introduced for IRS, susceptibility to DDT needs to be closely monitored to prevent the appearance and spread of resistance to this insecticide.
Highlights
The mosquito Anopheles funestus is a major vector of malaria throughout much of sub-Saharan Africa, but because it is a relatively intractable species to work with, it has only recently started to receive the scientific attention such an important public health pest deserves
Recent effort to further elucidate mechanisms of pyrethroid resistance in An. funestus has used the laboratory selected resistant strain FUMOZ-R from Mozambique [5,6,7]. These studies have confirmed the role of P450 genes in conferring pyrethroid resistance, but the specific P450s involved are still not fully characterised
One of the obstacles in working with field samples of An. funestus is the difficulty in rearing F1 material from field collected mosquitoes of this species to obtain the large numbers needed for an extensive resistance characterisation including WHO susceptibility tests, biochemical, genetic and molecular assays
Summary
The mosquito Anopheles funestus is a major vector of malaria throughout much of sub-Saharan Africa, but because it is a relatively intractable species to work with, it has only recently started to receive the scientific attention such an important public health pest deserves. Recent effort to further elucidate mechanisms of pyrethroid resistance in An. funestus has used the laboratory selected resistant strain FUMOZ-R from Mozambique [5,6,7] These studies have confirmed the role of P450 genes in conferring pyrethroid resistance, but the specific P450s involved are still not fully characterised. Anopheles funestus is difficult to rear, it is crucial to analyse field populations of this malaria vector in order to successfully characterise mechanisms of insecticide resistance observed in this species in Africa. In this study we carried out a large-scale field collection and rearing of An. funestus from Mozambique in order to analyse its susceptibility status to insecticides and to broadly characterise the main resistance mechanisms involved in natural populations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.