Abstract

The United Nation’s Decade on Ecosystem Restoration 2021–2030 aims to halt ecosystem degradation to achieve Sustainable Development Goals (SDGs) by 2030. In Malaysia, the concept of sustainable forest management (SFM) has been practiced since 1901. In this study, we evaluated the genetic diversity of the native dipterocarp timber tree Shorea acuminata in a rehabilitated area at Kenaboi Forest Reserve (Kenaboi FR). The rehabilitated area was formerly a degraded forest managed with the taungya restoration system for 50 years. All trees with diameter at breast height (DBH) of 5 cm and over were measured, tagged and identified in a one-hectare study plot. A total of 132 inner bark samples were collected for DNA extraction. Four SSR markers (Sle280, Sle392, Sle475 and Sle566) and two EST-SSR markers (SleE07 and SleE16) were used to analyse 95 good-quality DNA samples. Genetic diversity parameters including maternal contribution were determined for 75 samples. The genetic diversity of big trees (He = 0.656 ± 0.19) and small trees (He = 0.652 ± 0.17) were high and both were in genetic equilibrium, with Fis values of the big trees being 0.035 and small trees being 0.164. Clustering analysis based on Jaccard’s similarity values (at 95% confidence level) confirmed that big trees in the Kenaboi FR rehabilitated area had originated from genetically diverse seed trees of the Sungai Menyala Forest Reserve which were used as the planting stock for the taungya restoration system. Maternal contribution showed that the allele contribution of the small trees came from the planted S. acuminata trees within the study area. The high genetic diversity of small trees in this study provides strong evidence that the existing big trees would be suitable for a genetically diverse seed collection to rehabilitate other degraded forests. Sustainable forest management must emphasise genetic diversity in order to ensure the resilience of rehabilitated forest ecosystems.

Highlights

  • A total of 123 genomic DNA were extracted from 132 inner barks of S. acuminata in compartment 107, Kenaboi Forest Reserve (FR)

  • About 48 genomic DNA were from small S. acuminata trees, whereas 75 genomic DNA were from big S. acuminata trees

  • The taungya restoration system that was practised by the Forestry Department of Negeri Sembilan, Malaysia, since 1969 has successfully rehabilitated a forest area that was once a poorly degraded area in Kenaboi FR

Read more

Summary

Introduction

Forests around the world benefit humanity via a wide variety of functioning ecosystems that provide and regulate services such as mitigating climate change and water cycle and erosion control. Forest provides cultural ecosystem services that people gain from their interaction with forest environmental spaces via activities such as tourism and recreation [1,2,3]. For Malaysia, the forest is an ecosystem service provider but it is significant as an economic contributor. The Malaysian timber industry is the third-ranked industry after palm oil and rubber in the primary commodities sector

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.