Abstract

In this paper, a high-gain interval observer (HGIO) for a class of partially linear continuous-time systems with sampled measured outputs in the presence of bounded noise and additive disturbances is proposed. The design of the HGIO is formulated in the Linear Matrix Inequality (LMI) framework. The gain of the HGIO is designed to satisfy the cooperative property using a time-varying change of coordinates based on pole placement in separate LMI regions. Moreover, a procedure for designing the HGIO gain to minimise the effect of the noise and disturbance in the estimation is provided. The stability of the proposed HGIO is also guaranteed. The proposed approach is assessed in simulation using a numerical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.