Abstract

In the normal mammalian brain, neuronal synchrony occurs on a spatial scale of submillimeters to centimeters and temporal scale of submilliseconds to seconds that is reflected in the occurrence of high-frequency oscillations, physiological sharp waves and slow wave sleep oscillations referred to as Up-Down states. In the epileptic brain, the well-studied pathologic counterparts to these physiological events are pathological high-frequency oscillations and interictal spikes that could be electrophysiological biomarkers of epilepsy. Establishing these abnormal events as biomarkers of epilepsy will largely depend on a better understanding of the mechanisms underlying their generation, which will not only help distinguish pathological from physiological events, but will also determine what roles these pathological events play in epileptogenesis and epileptogenicity. This article focuses on the properties and neuronal mechanisms supporting the generation of high-frequency oscillations and interictal spikes, and introduces a new phenomenon called Up-spikes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.