Abstract
In electron-gas secondary neutral mass spectrometry (SNMS), a low-pressure plasma serves both as an ion source for sputter depth profiling the target and for post-ionizing the sputtered neutrals. In its high-frequency mode, a rectangular RF bias is applied to the target. We investigate by PIC/MC kinetic simulation the processes occurring in the vicinity of the substrate as a consequence of the voltage jumps: sheath expansion and contraction, as well as flux and energy of the ions impinging onto the substrate. In particular, we determine the enhancement of the ion current shortly after negatively charging the substrate; this enhancement is due to the acceleration of the large ion population in the expanding sheath. Our results indicate that already at a switch frequency of only 1 MHz the surface treatment by rectangularly shaped RF potentials is dominated by transient effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.