Abstract

We consider microstructured thin elastic plates that have an underlying periodic structure, and develop an asymptotic continuum model that captures the essential microstructural behaviour entirely in a macroscale setting. The asymptotics are based upon a two-scale approach and are valid even at high frequencies when the wavelength and microscale length are of the same order. The general theory is illustrated via one- and two-dimensional model problems that have zero-frequency stop bands that preclude conventional averaging and homogenization theories. Localized defect modes created by material variations are also modelled using the theory and compared with numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.