Abstract
Metallic nanostructures are becoming increasingly important for both fundamental research and practical devices. Many emerging applications employing metallic nanostructures often involve unconventional substrates that are flexible or nonplanar, making direct lithographic fabrication very difficult. An alternative approach is to transfer prefabricated structures from a conventional substrate; however, it is still challenging to maintain high fidelity and a high yield in the transfer process. In this paper, we propose a high-fidelity, clean nanotransfer lithography method that addresses the above challenges by employing a polyvinyl acetate (PVA) film as the transferring carrier and promoting electrostatic adhesion through triboelectric charging. The PVA film embeds the transferred metallic nanostructures and maintains their spacing with a remarkably low variation of <1%. When separating the PVA film from the donor substrate, electrostatic charges are generated due to triboelectric charging and facilitate adhesion to the receiver substrate, resulting in a high large-area transfer yield of up to 99.93%. We successfully transferred the metallic structures of a variety of materials (Au, Cu, Pd, etc.) with different geometries with a <50-nm spacing, high aspect ratio (>2), and complex 3D structures. Moreover, the thin and flexible carrier film enables transfer on highly curved surfaces, such as a single-mode optical fiber with a curvature radius of 62.5 μm. With this strategy, we demonstrate the transfer of metallic nanostructures for a compact spectrometer with Cu nanogratings transferred on a convex lens and for surface-enhanced Raman spectroscopy (SERS) characterization on graphene with reliable responsiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.