Abstract
Although Streptomyces species are major chitin-degraders in soil ecosystems, the expression of the diverse chitinase genes within Streptomyces coelicolor grown in soil has not been assessed. As a first step, the induction pattern of nine chitinase genes in S. coelicolor growing in autoclaved soil was compared with those in liquid cultures. The relative expression levels of nine chitinase genes were measured using real-time reverse transcription PCR. The expression of all chitinase genes was induced by chitin in both autoclaved soil and liquid cultures, but to different levels. The expression levels of five chitinase genes in autoclaved soil were significantly higher than those in the liquid cultures. In particular, a putative chitinase gene, chitinase H, showed the highest induction in autoclaved soil. The same induction pattern was confirmed in nonautoclaved soil, indicating that soil contains some factors affecting the expression of chitinase genes. The chiH gene product, ChiH, cloned in Streptomycetes lividans was secreted and exhibited chitin degradation activity that was stable within a wide range of acidic pHs. The disruption of dasR, a transcriptional regulator for the uptake of N-acetylglucosamine, abolished the expression of chiH, demonstrating that DasR is required for the regulation of ChiH expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.