Abstract
Lithium-ion batteries (LIBs) typically suffer from large irreversible capacities caused by active lithium loss during formation of a solid electrolyte interface (SEI) at the anode side. Cathode prelithiation with preloaded additives has emerged as an effective strategy to solve the above issue. With ultrahigh theoretical capacity, Li2O2 serves as an excellent cathode prelithiation additive, whereas poor ambient stability limits its further development. In this study, we report a surface protection strategy to enable ambient processing of the Li2O2 additive. Li2O2 is well confined in poly(methyl methacrylate) (PMMA) nanofibers (P-Li2O2) via electrospinning, which exhibits greatly enhanced ambient stability compared with the unprotected one. Notably, when P-Li2O2 is preloaded in LiNi0.5Co0.2Mn0.3O2 cathodes (NCM-P-Li2O2), PMMA nanofibers remain stable during cathode slurry processing but readily dissolve in electrolytes and expose Li2O2 for effective electrochemical oxidation. Fabrication of P-Li2O2 allows systematic investigation of prelithiation behavior in full cells (NCM-P-Li2O2 cathodes paired with Si/Graphite anodes) and its impact on the electrochemical performance. Rational tuning of the prelithiation degree provides guidance for optimizing the amount of the cathode additive, which brings appealing cell lifetime and energy density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.