Abstract

The recent development of separators with high flexibility, high electrolyte uptake, and ionic conductivity for batteries have gained considerable attention. However, studies on composite separators with the aforementioned properties for aqueous electrolytes in Zn-ion batteries are limited. In this research, a polyacrylonitrile (PAN)/bio-based polyurethane (PU)/Ti3C2Tx MXene composite membrane was fabricated using an electrospinning technique. Ti3C2 MXene was embedded in fibers and formed a spindle-like structure. With Ti3C2Tx MXene, the electrolyte uptake and ionic conductivity reached the superior values of 2214% and 3.35 × 10−3 S cm−1, respectively. The composite membrane presented an excellent charge–discharge stability when assembled in a Zn//Zn symmetrical battery. Moreover, the developed separator exhibited a high flexibility and no dimensional and structural changes after heat treatment, which resulted in the high-performance separator for the Zn-ion battery. Overall, the PAN/bio-based PU/Ti3C2Tx MXene composite membrane can be potentially used as a high-performance separator for Zn-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.