Abstract
AbstractAlthough the power conversion efficiency (PCE) of inorganic perovskite‐based solar cells (PSCs) is considerably less than that of organic‐inorganic hybrid PSCs due to their wider bandgap, inorganic perovskites are great candidates for the front cell in tandem devices. Herein, the low‐temperature solution‐processed two‐terminal hybrid tandem solar cell devices based on spectrally matched inorganic perovskite and organic bulk heterojunction (BHJ) are demonstrated. By matching optical properties of front and back cells using CsPbI2Br and PTB7‐Th:IEICO‐4F BHJ as the active materials, a remarkably enhanced stabilized PCE (18.04%) in the hybrid tandem device as compared to that of the single‐junction device (9.20% for CsPbI2Br and 10.45% for PTB7‐Th:IEICO‐4F) is achieved. Notably, the PCE of the hybrid tandem device is thus far the highest PCE among the reported tandem devices based on perovskite and organic material. Moreover, the long‐term stability of inorganic perovskite devices under humid conditions is improved in the hybrid tandem device due to the hydrophobicity of the PTB7‐Th:IEICO‐4F back cell. In addition, the potential promise of this type of hybrid tandem device is calculated, where a PCE of as much as ≈28% is possible by improving the external quantum efficiency and reducing energy loss in the sub‐cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.