Abstract

We employed a low-cost solution-processed ultrathin insulating polymeric layer of poly(4-hydroxystyrene) (PHS), with a high glass transition temperature (Tg ∼ 185 °C), as an interfacial layer between the polymer:fullerene photoactive layer and the Al negative electrode for enhancing device power conversion efficiency (PCE) of polymer bulk-heterojunction photovoltaic cells and investigated the roles of the interfacial nanolayer by ultraviolet photoemission spectroscopy and capacitance–voltage measurement. The thin polymeric layer forms a dipole layer and causes the vacuum level of the adjacent negative electrode to shift upward, which resulted in an increase of the built-in potential. As a result, the open-circuit voltage and PCE of the device using a PHS nanolayer were remarkably improved. We finally achieved a very high PCE of 6.5% with the PHS/Al negative electrode which is even much better than that of the device using an Al electrode (5.0%). The solution-processed inexpensive PHS layer with a high Tg can be an attractive alternative to conventional vacuum-deposited low-work-function metal and insulating metal fluoride interfacial layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.