Abstract

ABSTRACT The current fluorine wastewater treatment method mainly relies on neutralization, which has the drawback of high alkali consumption, solid waste generation, and re-dissolution of heavy metals. Similar problems exist in the vanadium (V) industry. This study aims to minimize fluorine wastewater generation, reducing CaF2 consumption by internally reusing raffinate at certain stages of the V extraction process. In the raffinate reuse leaching process, Al-F complex in the raffinate is decomposed and HF is produced under the action of sulfuric acid. This enhances the destruction of muscovite and improves the leaching efficiency of V. Response surface methodology (RSM) was used to optimize the raffinate reuse leaching process, and when the CaF2 dosage was reduced from 3 wt.% to 1.8 wt.% and the H2SO4 concentration was as low as 14 vol%, the process maintained the optimal V recovery efficiency of more than 86%. This methodology can achieve a 100% reuse rate of the raffinate, and has great potential for its application in the vanadium leaching industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.