Abstract

A high-efficiency digital-controlled interleaved dc-dc converter is designed and implemented to provide a regulated high voltage output for high-power proton-exchange-membrane fuel-cell applications. Ripple cancellation on input current and output voltage can be achieved by the studied interleaved dc-dc power conversion technique to reduce hysteresis energy losses inside the fuel-cell stacks and meet battery charging considerations on the high-voltage dc bus. An active-clamped circuit is also used to reduce the voltage spike on the power switches for raising the system reliability. The operation principles and the design considerations of the studied power converter are analyzed and discussed in detail. Finally, a 10-kW laboratory prototype is built and tested. The experimental results are shown to verify the feasibility of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.