Abstract

Various cathode interface materials have been used in organic solar cells (OSCs) to realize high performance. However, most cathode interface materials have their respective weaknesses in maximizing the efficiency or stability of OSCs. Herein, three kinds of alcohol-soluble cathode interfacial materials are combined with bathocuproine (BCP) to serve as multifunctional bilayer cathode buffers for the regular OSCs, and thus greatly enhanced power conversion efficiencies over 10.11% and significantly improved device stability have been achieved. By utilizing double interlayers, both light absorption and light distribution in active layer are improved. Furthermore, double interlayers offer favorable energy-level alignment, alcohol treatment, and duplicate protection of active layer, resulting in significantly reduced leakage current, suppressed recombination, and efficient charge collection. The improved device stability is related to the blocking effect of the complex formed between BCP and the metal electrode and the additional protection effect of the underlying alcohol-soluble materials. In view of the universal use of alcohol-soluble organic electrolyte as cathode buffer layers and by courtesy of the superiority of the double cathode layers relative to the monolayer controls, the double interlayer strategy demonstrated here opens a new way to fully exploiting the potential of OSCs and is believed to be extended to a wider application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.