Abstract
Colloidal nanocarriers can play a key role in the efficacious delivery of drugs, including antimalarials. Here, we investigated the ability of polymeric micelles of the block copolymer F127 to act as nanovehicles for two organic salts derived from chloroquine and human bile acids, namely, chloroquinium cholate (iCQP1) and chloroquinium glycocholate (iCQP1g). We have previously reported the strong in vitro antiplasmodial activity of these salts, which displayed IC50 values of 13 and 15 nM against blood forms of Plasmodium falciparum, respectively. By deriving from amphiphilic lipids, iCQP1 and iCQP1g also enclose the ability to act as surface-active ionic liquids (SAILs). The micellization properties of neat F127 and of the F127/SAIL mixtures were initially investigated to gain physicochemical insight into the interaction between polymer and bioactive SAILs, resorting to differential scanning calorimetry, surface tension measurements and dynamic light scattering. Micelle formation by F127 is an endothermic process strongly temperature and concentration dependent. Interestingly, this process is significantly changed when the molar fraction of SAIL (xSAIL) in the F127/SAIL mixture is varied between 0.33 and 0.90. Both SAILs favor the formation of mixed micelles by decreasing the micellization temperature, and (observed only when for xSAIL = 0.33) by synergistically decreasing the cmc. Concomitantly, the micellar size is reduced from 18 to 13 nm as xSAIL is increased from 0.33 to 0.90. Crucially, in vitro assays show that when the SAILs are loaded into F127 polymeric micelles, their antiplasmodial efficacy is substantially enhanced, with a significant drop in IC50, especially for the iCQP1/F127 system. This opens new possibilities for the nanoformulations of antimalarial compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.