Abstract

Shingled recording employing bit-patterned media when used in conjunction with heat-assisted magnetic recording can significantly enhance the recording density. This paper investigates writing of dots that are not directly under the laser pulse. Such a shifted scheme of writing allows higher densities when used with shingled recording. A further increase in the recording density can be obtained by using composite structures, comprising a superparamagnetic writing layer, and a (doped) FePt storage layer. Effect of head velocity, Curie temperature variation, track mis-registration, and dot position jitter on the standard deviation of switching distribution is studied to evaluate the designs that offer data densities as high as ~16 Tbpsi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.