Abstract

Pattern recognition based control of powered upper limb myoelectric prostheses offers a means of extracting more information from the available muscles than conventional methods. By identifying repeatable patterns of muscle activity across multiple muscle sites rather than relying on independent EMG signals it is possible to provide more natural, reliable control of myoelectric prostheses. The purposes of this study were to (1) determine if participants can perform distinctive muscle activation patterns associated with multiple wrist and hand movements reliably and (2) to show that high density EMG can be applied individually to determine the electrode location of a clinically acceptable number of electrodes (maximally eight) to classify multiple wrist and hand movements reliably in transradial amputees. Eight normally limbed subjects (five female, three male) and four transradial amputee subjects (two traumatic and congenital) subjects participated in this study, which examined the classification accuracies of a pattern recognition control system. It was found that tasks could be classified with high accuracy (85–98%) with normally limbed subjects (10–13 tasks) and with amputees (4–6) tasks. In healthy subjects, reducing the number of electrodes to eight did not affect accuracy significantly when those electrodes were optimally placed, but did reduce accuracy significantly when those electrodes were distributed evenly. In the amputee subjects, reducing the number of electrodes up to 4 did not affect classification accuracy or the number of tasks with high accuracy, independent of whether those remaining electrodes were evenly distributed or optimally placed. The findings in healthy subjects suggest that high density EMG testing is a useful tool to identify optimal electrode sites for pattern recognition control, but its use in amputees still has to be proven. Instead of just identifying the electrode sites where EMG activity is strong, clinicians will be able to choose the electrode sites that provide the most important information for classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.