Abstract

Since a decrease of the fatigue strength may result from punching operations, this study proposes a methodology for designing punched parts against high cycle fatigue crack initiation. To reach this goal, high cycle fatigue tests are performed on different specimens configurations with either punched or polished edges. Due to punching effects, the fatigue strength of punched specimens is significantly decreased. Fracture surfaces observations reveal that crack initiation occurs always on a punch defect. Additional investigations are combined to characterize how the edges are altered by the punching operations. High tensile residual stress levels along the loading direction are quantified using X-Ray diffraction techniques. Furthermore, micro-hardness measurements and X-Ray diffraction results reveals a strong hardness gradient due to punching operation. For a better understanding of crack initiation mechanisms, the edge geometries have been scanned with 3D optical microscopy, allowing us to identify the most critical defect (and its real geometry) by comparing the edges before and after fatigue failure. Finally, FEA are performed on identified defects. A non-local high cycle multiaxial fatigue strength criterion has been used as post-processing of FEA to take into account the effect on the HCF strength of defects and the strong stress-strain gradients around them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.