Abstract

The high cycle fatigue (HCF) properties of two cast nickel base-superalloys, IN 738 LC and IN 939, were investigated using both fracture mechanics samples and smooth specimens. The crack propagation behavior was studied in terms of linear fracture mechanics at RT and at 850 °C. In addition to the influence of temperature, the influences of frequency, mean stress, and environment (vacuum, air, sulfidizing atmosphere) were studied. At 850 °C, the fatigue thresholds were found to be higher in air than in vacuum. This could be explained by crack branching. The high scatter of fatigue crack propagation rates could be related also to this phenomenon. The S/N curves at 850 °C can be predicted treating crack growth from casting pores as the predominant failure mechanism. At RT the same method is not as successful. The reason for this may be that crack growth laws measured on long, branched cracks are not applicable to short, unbranched cracks. At RT, no significant influence of frequency on S/N-curves and fatigue crack growth rates was observed for frequencies up to 20 kHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.