Abstract
Small amounts (0.15wt%) of platinum and palladium were incorporated in porous, high surface area, ultra–stable H–USY–Zeolite by ion exchange method, and their catalytic activity was studied for carbon monoxide (CO) oxidation reaction, under various conditions of industrial importance. The catalyst was characterized by p–XRD, chemical analysis, SEM, TEM, evaluated for catalytic activity using a steady state, fixed bed catalytic reactor. The catalysts show high CO oxidation activity and it was possible to convert 0.044 mmols of CO per gram of catalyst at 120 °C, at a space velocity of 60 000 h−1 and with 100 ppm CO concentration in feed gas. The high catalytic activity of this noble metal catalyst also appears to be a factor of porous structure of zeolite facilitating mass transfer; high surface area as well as highly dispersed catalyst sites of palladium and platinum on zeolite structure. Introduction of acidic sites in zeolites probably makes them more resistant towards SO2, while their surface area and pore characteristics make this catalyst efficient even under high space velocity conditions, thus suggesting the potential of larger pore size zeolites over conventional porous materials for industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.