Abstract

Highly Li-ion conductive 78Li2S-22P2S5 glass-ceramic electrolytes were prepared by simple heat treatment of the glass phase obtained via mechanical ball milling. A high ionic conductivity of ∼1.78 × 10-3 S cm-1 is achieved at room temperature and is attributed to the formation of a crystalline phase of high lithium-ion conduction. All-solid-state lithium-ion batteries based on these glass-ceramic electrolytes are assembled by using Li2S nanoparticles or low-cost commercially available FeS2 as active cathode materials and Li-In alloys as anode. A high discharge capacity of 535 mAh g-1 is achieved after at least 50 cycles for the all-solid-state cells with Li2S as cathode materials, suggesting a rather high capacity retention of 97.4%. Even for the cells using low-cost FeS2 as cathode materials, same high discharge capacity of 560 mAh g-1 is also achieved after at least 50 cycles. Moreover, the Coulombic efficiency remain at ∼99% for these all-solid-state cells during the charge-discharge cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.