Abstract

We experimentally demonstrate 101.7-Tb/s transmission over 355 km spans of standard single-mode fiber (SSMF) at a net spectral efficiency of 11 b/s/Hz. A total of 370 dense wavelength-division multiplexed (DWDM) channels spanning the optical C- and L-bands spaced at 25 GHz were used. Each 25-GHz channel were subdivided into four subbands, with each subband carrying a 73.5-Gb/s orthogonal frequency-division multiplexed (OFDM) signal modulated with polarization-division-multiplexing (PDM) 128-ary quadrature amplitude modulation (QAM) at each modulated subcarrier. This experiment was enabled by digital signal processing (DSP) pre-equalization of transmitter impairments, all Raman amplification, heterodyne coherent detection, and DSP postequalization of the channel and receiver impairments, including pilot-based phase noise compensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.