Abstract
InP quantum dots (QDs) are considered as one of the most promising candidates of Cd- or Pb-based QDs in the applications of display and lighting. However, the performances of blue InP QDs and the corresponding light emitting devices (LEDs) are far inferior to those of their red and green counterparts, which strongly limits the development of InP QD based LEDs (QLEDs) technology. Here, high quantum yield (∼81%) and large size (∼7.0 ± 0.9 nm) InP/GaP/ZnS//ZnS QDs with a thick shell have been successfully synthesized by a shell engineering approach, and the corresponding QLEDs exhibit a record brightness and external quantum efficiency of 3120 cd·m-2 and 1.01%, respectively. Large-scale density functional theory calculations on thousands-of-atoms QDs indicate that thicker-shell ones favor a more balanced carrier injection in the QD film and simultaneously suppress the FRET between closely packed QDs, which collectively contribute to the improved blue device performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.