Abstract

AbstractHere, the fabrication of a high aspect ratio (>440) Ge1−xSnx nanowires with super‐thin (≈9 nm) diameter, much below the Bohr radius, using a simple solvothermal‐like growth method under supercritical toluene conditions at a reaction temperature of 440 °C is reported. Ge1−xSnx nanowires are grown with varying amounts of Sn in Ge lattice, between 3.1 to 10.2 at%. The growth of the Ge1−xSnx alloy nanowires is achieved without any additional catalysts, and directly on current collector substrates (titanium) for application as Li‐ion battery anodes. The electrochemical performance of the binder‐free Ge1−xSnx nanowires as an anode material for Li‐ion batteries is investigated via galvanostatic cycling and detailed analysis of differential capacity plots. The dimensions of the nanowires, and the amount of Sn in Ge, are critical to achieving a high specific capacity and capacity retention. Ge1−xSnx nanowires with the highest aspect ratios and with the lowest Sn content (3.1 at%) demonstrate exceptional capacity retention of ≈90% and 86% from the 10th to the 100th and 150th cycles respectively, while maintaining a very high specific capacity value of 1176 and 1127 mAh g−1 after the 100 and 150 cycles respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.