Abstract

NG2 is a transmembrane chondroitin sulfate proteoglycan that is expressed by immature progenitor cells in several developmental lineages and by some types of malignant cells. In vitro studies have suggested that NG2 participates in growth factor activation of the platelet-derived growth factor-alpha receptor. In this study the ability of recombinant NG2 core protein to interact with several different growth factors (epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF)-AA, PDGF-BB, vascular endothelial growth factor (VEGF)165 and transforming growth factor (TGF)-beta1) was investigated using two different assay systems: enzyme-linked immunosorbent assay-type solid-phase binding and an optical biosensor (BIAcore) system. High-affinity binding of bFGF and PDGF-AA to the core protein of NG2 could be demonstrated with both types of assays. Using both the BIAcore software analysis program and nonlinear regression analysis of the solid phase binding data, KD values in the low nanomolar range were obtained for binding of each of these growth factors to NG2. The results further indicate that NG2 contains at least two binding sites for each of these two growth factors. PDGF-BB, TGF-beta1, VEGF, and EGF exhibited little or no binding to NG2 in either type of assay. These data suggest that NG2 can have an important role in organizing and presenting some types of mitogenic growth factors at the cell surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.