Abstract
We study Higgs boson pair production processes at future hadron and lepton colliders including the photon collision option in several new physics models; i.e., the two-Higgs-doublet model, the scalar leptoquark model, the sequential fourth generation fermion model and the vector-like quark model. Cross sections for these processes can deviate significantly from the standard model predictions due to the one-loop correction to the triple Higgs boson coupling constant. For the one-loop induced processes such as $gg \to hh$ and $\gamma\gamma\to hh$, where $h$ is the (lightest) Higgs boson and $g$ and $\gamma$ respectively represent a gluon and a photon, the cross sections can also be affected by new physics particles via additional one-loop diagrams. In the two-Higgs-doublet model and scalar leptoquark models, cross sections of $e^+e^-\to hhZ$ and $\gamma\gamma\to hh$ can be enhanced due to the non-decoupling effect in the one-loop corrections to the triple Higgs boson coupling constant. In the sequential fourth generation fermion model, the cross section for $gg\to hh$ becomes very large because of the loop effect of the fermions. In the vector-like quark model, effects are small because the theory has decoupling property. Measurements of the Higgs boson pair production processes can be useful to explore new physics through the determination of the Higgs potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.