Abstract
We discuss neutrino masses and mixing in the framework of a supersymmetric model with an $U(1)_{R}$ symmetry, consisting of a single right handed neutrino superfield with an appropriate R charge. The lepton number ($L$) of the standard model fermions are identified with the negative of their R-charges. As a result, a subset of leptonic R-parity violating operators can be present and are consistent with the $U(1)_R$ symmetry. This model can produce one light Dirac neutrino mass at the tree level without the need of introducing a very small neutrino Yukawa coupling. We analyze the scalar sector of this model in detail paying special attention to the mass of the lightest Higgs boson. One of the sneutrinos might acquire a substantial vacuum expectation value leading to interesting phenomenological consequences. Different sum rules involving the physical scalar masses are obtained and we show that the lightest Higgs boson mass receives a contribution proportional to the square of the neutrino Yukawa coupling $f$. This allows for a 125 GeV Higgs boson at the tree level for $f \sim {\cal O} (1)$ and still having a small tree level mass for the active neutrino. In order to fit the experimental results involving neutrino masses and mixing angles we introduce a small breaking of $U(1)_R$ symmetry, in the context of anomaly mediated supersymmetry breaking. In the presence of this small R-symmetry breaking, light neutrino masses receive contributions at the one-loop level involving the R-parity violating interactions. We also identify the right handed sterile neutrino as a warm dark matter candidate in our model. In the case of R-symmetry breaking, the large $f$ case is characterized by a few hundred MeV lightest neutralino as an unstable lightest supersymmetric particle (LSP) and we briefly discuss the cosmological implications of such a scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.