Abstract

A NiFe‐based integrated electrode is fabricated by the spontaneous galvanic replacement reaction on an iron foam. Driven by the different electrochemical potentials between Ni and Fe, the dissolution of surface Fe occurs with electroless plating of Ni on iron foam with no need to access instrumentation and input energy. A facile cyclic voltammetry treatment is subsequently applied to convert the metallic NiFe to NiFeOx. A series of analytical methods indicates formation of a NiFeOx film of nanosheets on the iron foam surface. This hierarchically structured three dimensional electrode displays high activity and durability against water oxidation. In 1 m KOH, a current density of 1000 mA cm−2 is achieved at an overpotential of only 300 mV. This method is readily extended to fabricate CoFe or NiCoFe‐based integrated electrodes for water oxidation. Phosphorization of the bimetallic oxide (NiFeOx) generates the bimetallic phosphide (NiFe‐P), which can act as an excellent electrocatalyst for hydrogen production in 1 m KOH. An alkaline electrolyzer is constructed using NiFeOx and NiFe‐P coated iron foams as anode and cathode, which can realize overall water splitting with a current density of 100 mA cm−2 at an overpotential of 630 mV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.