Abstract

Rechargeable aqueous Zn metal batteries (AZMBs) are desirable because of the advantages of metallic Zn and aqueous media. However, AZMBs suffer from limited cyclability and low Coulombic efficiency, originating from uncontrolled dendrite growth and side reactions such as hydrogen gas evolution and corrosion. A hierarchically porous poly(vinylidene difluoride) (PVDF) protection layer with ferroelectric β-phases is formed on the Zn metal using a simple electrospinning method. This suppresses Zn metal failure modes such as side reactions and dendrite growth and supports rapid electrolyte accessibility. The synergetic effect of hierarchically porous structures and ferroelectricity not only facilitates a supporting matrix to form uniform nucleation sites for Zn deposition but also inhibits corrosion, allowing dendrite-free Zn deposition. This multifunctional PVDF film significantly improves the cyclability of Zn symmetric cells, allowing for up to 850 h of repeated plating/stripping cycles. Moreover, it exhibits an excellent cycle life of 1000 cycles under harsh conditions and high current densities of 4.0-10.0 mA cm-2, which are 62-fold higher than those that the bare Zn electrode tolerates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.