Abstract

Reducing environmental pollution with household waste and emissions from the computing clusters is an urgent technological problem. In our work, we explore both of these aspects: the deep learning application to improve the efficiency of waste recognition on recycling plant’s conveyor, as well as carbon dioxide emission from the computing devices used in this process. To conduct research, we developed an unique open WaRP dataset that demonstrates the best diversity among similar industrial datasets and contains more than 10,000 images with 28 different types of recyclable goods (bottles, glasses, card boards, cans, detergents, and canisters). Objects can overlap, be in poor lighting conditions, or significantly distorted. On the WaRP dataset, we study training and evaluation of cutting-edge deep neural networks for detection, classification and segmentation tasks. Additionally, we developed a hierarchical neural network approach called H-YC with weakly supervised waste segmentation. It provided a notable increase in the detection quality and made it possible to segment images, learning only having class labels, not their masks. Both the suggested hierarchical approach and the WaRP dataset have shown great industrial application potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.