Abstract

The myoelectric control strategy, based on surface electromyographic signals, has long been used for controlling a prosthetic system with multiple degrees of freedom. Several methods classify gestures and force levels but the simultaneous real-time control of hand/wrist gestures and force levels did not yet reach a satisfactory level of effectiveness. In this work, the hierarchical classification approach, already validated on 31 healthy subjects, was adapted for the real-time control of a multi-DoFs prosthetic system on 15 trans-radial amputees. The effectiveness of the hierarchical classification approach was assessed by evaluating both offline and real-time performance using three algorithms: Logistic Regression (LR), Non-linear Logistic Regression (NLR), and Linear Discriminant Analysis (LDA). The results of this study showed the offline performance of amputees was promising and comparable to healthy subjects, with mean F1 scores of over 90% for the "Hand/wrist gestures classifier" and 95% for the force classifiers, implemented with the three algorithms with features extraction (FE). Another significant finding of this study was the feasibility of using the hierarchical classification strategy for real-time applications, due to its ability to provide a response time of 100 ms while maintaining an average online accuracy of above 90%. A possible solution for real-time control of both hand/wrist gestures and force levels is the combined use of the LR algorithm with FE for the "Hand/wrist gestures classifier", and the NLR with FE for the Spherical and Tip force classifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.