Abstract

This paper reports a strategy to get self-assembly of Cu7Te5 nanorods into hierarchical superstructures: the side-by-side self-assembly of nanorods into microscale one-dimensional (1D) nanowires (primary structure), the side-by-side alignments of the 1D nanowires into two-dimensional (2D) nanowire bundles (secondary structure), and the further rolling up of the 2D bundles into three-dimensional (3D) microtubes (tertiary structure). It was found that the oleylamine (OLA)/n-dodecanethiol (DDT) mixture as a binary capping agent was key to produce Cu7Te5 nanorods in the quantum size regime with high monodispersity, and this was a prerequisite for their hierarchical self-assembly based on elaborate control of the solvent evaporation process. The obtained Cu7Te5 microtube superstructures were used as SERS substrate and showed much stronger SERS enhancement than the as-prepared Cu7Te5 nanorods before assembly. This was probably ascribed to the remarkably enhanced local electromagnetic field arising from the plasmon coupling of Cu7Te5 nanorods in the well-assembled superstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.