Abstract

AbstractElectrochemical water splitting is a common way to produce hydrogen gas, but the sluggish kinetics of the oxygen evolution reaction (OER) significantly limits the overall energy conversion efficiency of water splitting. In this work, a highly active and stable, meso–macro hierarchical porous Ni3S4 architecture, enriched in Ni3+ is designed as an advanced electrocatalyst for OER. The obtained Ni3S4 architectures exhibit a relatively low overpotential of 257 mV at 10 mA cm−2 and 300 mV at 50 mA cm−2. Additionally, this Ni3S4 catalyst has excellent long‐term stability (no degradation after 300 h at 50 mA cm−2). The outstanding OER performance is due to the high concentration of Ni3+ and the meso–macro hierarchical porous structure. The presence of Ni3+ enhances the chemisorption of OH−, which facilitates electron transfer to the surface during OER. The hierarchical porosity increases the number of exposed active sites, and facilitates mass transport. A water‐splitting electrolyzer using the prepared Ni3S4 as the anode catalyst and Pt/C as the cathode catalyst achieves a low cell voltage of 1.51 V at 10 mA cm−2. Therefore, this work provides a new strategy for the rational design of highly active OER electrocatalysts with high valence Ni3+ and hierarchical porous architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.