Abstract
As intercalation-type anode materials for Li-ion batteries (LIBs), the commercially used graphite and Li4 Ti5 O12 exhibit good cycling and rate properties, but their theoretical specific capacities are too low to meet the ever-growing demands of high-energy applications such as electric vehicles. Therefore, the development of new intercalation-type anode materials with larger capacity is very desirable. Herein, we design and synthesize novel 3 D hierarchical porous V2 O3 @C micro/nanostructures consisting of crumpled nanosheets, through self-reduction under annealing from the structurally similar VO2 (B)@C precursors without the addition of any other reducing reagent or gas. Excitingly, it is found for the first time through ex situ XRD technology that V2 O3 is a new, promising intercalation-type anode material for LIBs with a high capacity. V2 O3 @C micro/nanostructures can deliver a large capacity of 732 mAh g-1 without capacity loss at 100 mA g-1 even after 136 cycles, as well as exhibiting excellent cycling and rate performances. The application of V2 O3 for Na-ion batteries (NIBs) is elaborated for the first time, and excitingly, it is found that V2 O3 @C micro/nanostructures may be promising anode materials for NIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.