Abstract
The porous carbon with a high surface area is prepared from rice husk through pyrolysis and chemical activation and explored as the counter electrode of dye-sensitized solar cells. Structure and texture analysis reveals that the as-prepared porous carbon has a hierarchical porous structure containing large-size mesopores and abundant micropores. Electrochemical studies indicate that the obtained hierarchical porous carbon electrode has high electrocatalytic activity for I−/I3− redox reaction and enhanced electrolyte diffusion capability. These enhanced electrochemical properties are beneficial for improving the photovoltaic performance of dye-sensitized solar cells. Under irradiation of 100 mW cm−2, the dye-sensitized solar cell with this porous carbon counter electrode shows a conversion efficiency of 6.32%, which is closed to that of the cell with Pt electrode (6.69%). These promising results highlight the potential application of hierarchical porous carbon derived from rice husk in more cost-effective dye-sensitized solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.