Abstract
A simple pathway for the fabrication of real moth eyelike patterned (MEP) polymer film with a double-layered nano/microhierarchical structure is demonstrated through a solid/liquid interfacial reaction at atmospheric conditions. A convex-structured polyvinyl alcohol (PVA) film containing CdCl2 was first fabricated using a self-organized honeycomb-patterned porous film as a template. The CdCl2/PVA convex film was immersed into Na2S/ethanol solution to facilitate the reaction between CdCl2 and Na2S at the solid/liquid interface, which led to the functionalization of CdS nanoparticles in the convex-structured PVA film. The tunable introduction of interfacial reaction resulted in the formation of a CdS moth eyelike nanoarray on the top surface of the PVA convex microarray, which mimicked the real moth eye (PVA-CdS MEP). PVA-CdS MEP film with a double moth eyelike structure showed improved antireflective property in comparison with flat and convex-structured PVA films. The PVA-CdS MEP film showed photoresponse under simulated solar light radiation and flexible duration after 500 cycles of folding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.