Abstract

Hybrid metal-organic frameworks (MOFs) with core/shell-like hierarchical structure comprised of zirconium metal and porphyrin (e.g., TPP) and its isomer, N-confused porphyrin (NCP), were synthesized through a seed-mediated reaction. The hierarchical structures of hybrid MOFs were characterized by the microscopic image analyses (e.g., scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectrometry, and confocal laser scanning microscope (CLSM)). Taking advantage of the intrinsic light-harvesting properties of the porphyrin dye and the N-confused isomer, changing the core/shell layer structures of hybrid MOFs allows for tuning of the visible-to-near-infrared (NIR) absorption/emission characters, excited-state energy migrations, and photosensitization capabilities. The Förster energy transfer event occurring in the bulk MOF samples by photoexcitation enabled us to control the photoinduced singlet oxygen generation through the comprehensive light-harvesting ability of these hybrid porphyrinic MOFs. Therefore, implementation of a precisely designed porphyrin "substitute" into the MOF-based materials indeed provides a new mimic of the photosynthetic pigment system and should be potentially applicable for solar-light-driven devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.