Abstract
AbstractFor many scientific and engineering applications, it is often desirable to use unstructured grids to represent complex geometries. Unfortunately, the data structures required to represent discretizations on such grids typically result in extremely inefficient performance on current high‐performance architectures. Here, we introduce a grid framework using patch‐wise, regular refinement that retains the flexibility of unstructured grids, while achieving performance comparable to that seen with purely structured grids. This approach leads to a grid hierarchy suitable for use with geometric multigrid methods, thus combining asymptotically optimal algorithms with extremely efficient data structures to obtain a powerful technique for large scale simulations. Copyright © 2004 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.