Abstract
Gallium nitride nanostructures have been receiving considerable attention as building blocks for nanophotonic technologies due to their unique high aspect ratios, promising the realization of photonic and biological nanodevices such as blue light emitting diodes (LEDs), short-wavelength ultraviolet nanolasers and nanofluidic biochemical sensors. In this study, we report on the hierarchical growth of GaN nanowires (NWs) by dynamically adjusting the growth parameters using pulsed flow metalorganic chemical vapor deposition (MOCVD) technique. We carried out two step growth processes to grow hierarchical GaN NWs. At the first step the GaN NWs were grown at 950°C and in the second stage, we suitably decreased the growth temperature to 710°C to grow the hierarchical structures. The surface morphology, structural and optical characterization of the grown hierarchical GaN NWs were studied by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and photoluminescence (PL) measurements, respectively. These kind of hierarchical NWs are promising to allow flat band quantum structures that are shown to improve the efficiency of light-emitting diodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.