Abstract

The agglomerative hierarchical clustering of continuous variables is studied in the framework of the likelihood linkage analysis method proposed by Lerman. The similarity between variables is defined from the process comparing the empirical copula with the independence copula in the spirit of the test of independence proposed by Deheuvels. Unlike more classical similarity coefficients for variables based on rank statistics, the comparison measure considered in this work can also be sensitive to non-monotonic dependencies. As aggregation criteria, besides classical linkages, permutation-based linkages related to procedures for combining dependent p -values are considered. The performances of the corresponding clustering algorithms are compared through thorough simulations. In order to guide the choice of a partition, a natural probabilistic selection strategy, related to the use of the gap statistic in object clustering, is proposed and empirically compared with classical ordinal approaches. The resulting variable clustering procedure can be equivalently regarded as a potentially less computationally expensive alternative to more powerful tests of multivariate independence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.