Abstract

The magnetoluminescence spectra of symmetric quantum wells containing an electron gas show an abrupt transition from Landau level behavior (i.e. a linear shift of energy with field) to quadratic (exciton-like) behavior as the magnetic field is increased. This so-called “Mott transition” always occurs at the field at which the electron filling factor ν e is 2, i.e. when the lowest Landau level is just filled. We show that the transition is a natural consequence of a hidden symmetry which has been shown to hold in two-dimensional systems at high fields. The mechanism driving it has nothing to do with that driving the true Mott transition, and it would be better named a “symmetry-driven transition”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.