Abstract

A spin-orbit coupled two-dimensional (2D) Bose gas is shown to simultaneously possess quasi and true long-range order in the total and relative phase sectors, respectively. The total phase undergoes a Berenzinskii- Kosterlitz-Thouless transition to a low temperature phase with quasi long-range order, as expected for a two- dimensional quantum gas. Additionally, the relative phase undergoes an Ising-type transition building up true long-range order, which is induced by the anisotropic spin-orbit coupling. Based on the Bogoliubov approach, expressions for the total- and relative-phase fluctuations are derived analytically for the low temperature regime. Numerical simulations of the stochastic projected Gross-Pitaevskii equation (SPGPE) give a good agreement with the analytical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.