Abstract
Accessibility of DNA elements and the orchestration of spatiotemporal chromatin-chromatin interactions are critical mechanisms in the regulation of gene transcription. Thus, in an ever-changing milieu, cells mount an adaptive response to environmental stimuli by modulating gene expression that is orchestrated by coordinated changes in chromatin architecture. Correspondingly, agents that alter chromatin structure directly impact transcriptional programs in cells. Heavy metals, including hexavalent chromium (Cr(VI)), are of special interest because of their ability to interact directly with cellular protein, DNA and other macromolecules, resulting in general damage or altered function. In this review we highlight the chromium-mediated mechanisms that promote disruption of chromatin architecture and how these processes are integral to its carcinogenic properties. Emerging evidence shows that Cr(VI) targets nucleosomal architecture in euchromatin, particularly in genomic locations flanking binding sites of the essential transcription factors CTCF and AP1. Ultimately, these changes contribute to an altered chromatin state in critical gene regulatory regions, which disrupts gene transcription in functionally relevant biological processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.