Abstract

The bacterial Sm-like protein Hfq forms a ring-shaped homo-hexamer that is necessary for Hfq to bind nucleic acids and to act in small noncoding RNA regulation. Using semi-native gels and fluorescence anisotropy, we show that Hfq undergoes a cooperative conformational change from monomer to hexamer around 1 μM protein, which is comparable to the in vivo concentration of Hfq and above the dissociation constant of the Hfq hexamer from many RNA substrates. Above 2 μM protein, Hfq hexamers associate in high-molecular-weight complexes. Mutations that impair RNA binding to the proximal face strongly destabilize the hexamer, while the mutation R16A near the outer rim prevents hexamer association. Stopped-flow fluorescence resonance energy transfer experiments showed that Hfq subunits interact within a few seconds, suggesting that Hfq monomers, hexamers and multi-hexamer complexes are in dynamic equilibrium. Finally, we show that Hfq is most active in RNA annealing when the hexamer is present. These results suggest that RNA binding is coupled to hexamer assembly and that the biochemical activity of Hfq reflects the equilibrium between different quaternary structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.