Abstract

A single two-dimensional Dirac fermion state has been recently observed on the surface of the topological insulator Bi2Te3 by angle-resolved photoemission spectroscopy. We study the surface band structure using k x p theory and find an unconventional hexagonal warping term, which is the counterpart of cubic Dresselhaus spin-orbit coupling in rhombohedral structures. We show that this hexagonal warping term naturally explains the observed hexagonal snowflake Fermi surface. The strength of hexagonal warping is characterized by a single parameter, which is extracted from the size of the Fermi surface. We predict a number of testable signatures of hexagonal warping in spectroscopy experiments on Bi2Te3. We also explore the possibility of a spin-density wave due to strong nesting of the Fermi surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.