Abstract

Type error messages that are reported for incorrect functional programs can be difficult to understand. The reason for this is that most type inference algorithms proceed in a mechanical, syntax-directed way, and are unaware of inference techniques used by experts to explain type inconsistencies. We formulate type inference as a constraint problem, and analyze the collected constraints to improve the error messages (and, as a result, programming efficiency). A special data structure, the type graph, is used to detect global properties of a program, and furthermore enables us to uniformly describe a large collection of heuristics which embed expert knowledge in explaining type errors. Some of these also suggest corrections to the programmer. Our work has been fully implemented and is used in practical situations, showing that it scales up well. We include a number of statistics from actual use of the compiler showing us the frequency with which heuristics are used, and the kind and number of suggested corrections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.