Abstract

The problem of scheduling in two different types of flowshops (all jobs available at time zero, different job availability times known a priori) and in flowline-based manufacturing cells is considered with the objective of minimizing the sum of weighted flowtime and weighted tardiness of jobs. First, heuristic preference relations are developed by the consideration of lower bounds on the completion times, operation due-dates, and weights for holding and tardiness of jobs. A heuristic algorithm for scheduling is then proposed by making use of the heuristic preference relations. Two more heuristic algorithms are developed by implementing an improvement scheme to enhance the quality of the solution given by the first heuristic algorithm. The proposed and the existing heuristics are evaluated with respect to the three problem classes under consideration by solving a large number of randomly generated problems. The results of an extensive computational investigation for various problem sizes are presented. It has been observed that all three proposed heuristics perform better than the existing heuristics in giving a solution of superior quality and that the first proposed heuristic yields a good solution by requiring a negligible CPU time. In addition, an experimental investigation is carried out to evaluate the effectiveness of the improvement scheme when implemented in the existing heuristics, and also the effectiveness of heuristics based on simulated annealing. The results are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.