Abstract

We propose a new algorithm for deconvolution of electrospray ionization mass spectra based on direct assignment of charge to the measured signal at each mass-to-charge ratio (m/z). We investigate two heuristics for charge assignment: the entropy-based heuristic is adapted from a deconvolution algorithm by Reinhold and Reinhold;10 the multiplicative-correlation heuristic is adapted from the multiplicative-correlation deconvolution algorithm of Hagen and Monnig.6 The entropy-based heuristic is insensitive to overestimates of z(max), the maximum ion charge. We test the deconvolution algorithm on two single-component samples: the measured spectrum of human beta-endorphin has two prominent and one very weak line whereas myoglobin has a well-developed quasi-gaussian envelope of 17 peaks. In both cases, the deconvolution algorithm gives a clean deconvoluted spectrum with one dominant peak and very few artefacts. The relative heights of the peaks due to the parent molecules in the deconvoluted spectrum of a mixture of two peptides, which are expected to ionize with equal efficiency, give an accurate measure of their relative concentration in the sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.