Abstract

Marine picocyanobacteria are ubiquitous primary producers across the world’s oceans, and play a key role in the global carbon cycle. Recent evidence stemming from in situ investigations have shown that picocyanobacteria are able to sink out of the euphotic zone to depth, which has traditionally been associated with larger, mineral ballasted cells. The mechanisms behind the sinking of picocyanobacteria remain a point of contention, given that they are too small to sink on their own. To gain a mechanistic understanding of the potential role of picocyanobacteria in carbon export, we tested their ability to form “suspended” (5–60 μm) and “visible” (ca. > 0.1 mm) aggregates, as well as their production of transparent exopolymer particles (TEP)—which are a key component in the formation of marine aggregates. Additionally, we investigated if interactions with heterotrophic bacteria play a role in TEP production and aggregation in Prochlorococcus and Synechococcus by comparing xenic and axenic cultures. We observed TEP production and aggregation in batch cultures of axenic Synechococcus, but not in axenic Prochlorococcus. Heterotrophic bacteria enhanced TEP production as well as suspended and visible aggregate formation in Prochlorococcus, while in Synechococcus, aggregation was enhanced with no changes in TEP. Aggregation experiments using a natural plankton community dominated by picocyanobacteria resulted in aggregation only in the presence of the ballasting mineral kaolinite, and only when Synechococcus were in their highest seasonal abundance. Our results point to a different export potential between the two picocyanobacteria, which may be mediated by interactions with heterotrophic bacteria and presence of ballasting minerals. Further studies are needed to clarify the mechanistic role of bacteria in TEP production and aggregation of these picocyanobacteria.

Highlights

  • The export of particulate organic carbon (POC) to ocean depth, a primary component of the marine carbon cycle, occurs in the form of sinking particles composed of aggregates of phytoplankton, bacteria, detritus, and inorganic matter

  • At the Bermuda Atlantic Time-Series Study (BATS) site, located in the oligotrophic Northwestern Sargasso Sea, Synechococcus was overrepresented in sinking particles compared to the water column, while the opposite was observed for Prochlorococcus (Amacher et al, 2013), suggesting a differential contribution from these two picocyanobacteria to POC flux

  • Direct attachment between heterotrophs and picocyanobacteria cells could be observed by epifluorescence microscopy of xenic cultures, but no heterotrophic bacteria were observed in the axenic cultures

Read more

Summary

INTRODUCTION

The export of particulate organic carbon (POC) to ocean depth, a primary component of the marine carbon cycle, occurs in the form of sinking particles composed of aggregates of phytoplankton, bacteria, detritus, and inorganic matter. Axenic batch cultures of Synechococcus produce TEP (Deng et al, 2016) and form sinking aggregates with the addition of kaolinite clay (Deng et al, 2015) Lithogenic clays, such as kaolinite, that are sourced from continental weathering and supplied to the oceans by long-range aeolic transport (Tosca et al, 2010), are commonly used for testing the role of ballasting minerals in phytoplankton aggregation (Hamm, 2002; Verspagen et al, 2006; Deng et al, 2015). To explain observations suggesting a differential contribution of Synechococcus and Prochlorococcus to POC flux, controlled laboratory studies are needed to test the potential mechanisms behind the export of these ubiquitous picocyanobacteria. Our study contributes to the understanding of the potential mechanisms of export of Prochlorococcus and Synechococcus to the deep ocean

MATERIALS AND METHODS
RESULTS
DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.